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Various transition elements are used in general for the effective finite element analysis of

complicated mechanical structures. In this paper, a solid-to-beam transition finite element,

which can be used for connecting a Cl-continuity beam element to a continuum solid element,

is proposed. The shape functions of the transition finite element are derived to meet the
compatibility condition, and a transition element equation is formulated by the conventional

finite element procedure. In order to show the effectiveness and convergence characteristics of

the proposed transition element, numerical tests are performed for various examples. As a result

of this study, following conclusions are obtained. (l) The proposed transition element, which

meets the compatibility of the primary variables, exhibits excellent accuracy. (2) In case of using

the proposed transition element, the number of nodes in the finite element model may be
considerably reduced and the model construction becomes more convenient. (3) This

formulation method can be applied to the usage of higher order elements.
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Displacement Field.

1. Introduction

In analyzing a structure by the finite element
method, the selection of finite elements is very

important for the solution accuracy and

reliability. Especially, it is difficult to model a

complicated mechanical structure using structural
elements only, so a continuum element is used in

general (Bathe, 1982; Reddy, 1993). However,

when complicated mechanical structures are

modeled using the continuum elements,

considerable efforts and time are required for
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preparing the input data. For a plane problem,

these input data may be prepared without much

difficulty, but for 3D solid problems their
preparation is not easy. Thus, nowadays, the

element construction and the preparation of input

data are automatically executed by the mesh gen­

eration module of commercial package programs.

Users who do not know well the characteristics of
the generation module and the generated

elements, however, may not obtain good results.

So, in order to efficiently analyze a complex

structure and reduce the efforts and time required
for the analysis, several transition elements are

needed in general.

These days, the transition finite elements are

classified into two types. The first type is used as
an element for the transition region where the

element discretization changes from higher order

to lower order or from coarse mesh to fine mesh.
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This transition element has been studied for
increasing continuity and compatibility (Cook et
al., 1989; Gupta, 1978), and is mainly used for the
adaptive finite element analysis. The other type is

used to connect elements that are different in
kind. Because the degrees of freedom and the
primary variables of nodes between the elements
being connected are different, the kinematic
compatibility of this transition element has to be
seriously considered.

For the transition element of the latter type, a
solid-to-beam element proposed by T. C. Gmiir
and R. H. Kauten (1993) is used for the connec­
tion of solid elements with the Timoshenko's
beam elements. But this transition element,
formulated by the isoparametric formulation
method (Gmiir and Kauten, 1993; Surana, 1980),
is mathematically complex, and can not be used
with the Euler's beam element due to the lack of
compatibility.

In this paper, a formulation method of a solid­
to-beam transition finite element that can be used
for the connection of a continuum element with
an Euler beam element is newly proposed. Low
order 2D plane elements and 3D solid elements
are used as the continuum element, and the beam
element considered is the C'-continuity Euler
beam element. Shape functions at nodes where the
continuum and beam elements are connected are
determined to meet the compatibility of the pri­
mary variables. Using these shape functions, a
matrix equation for the transition element is
formulated by the conventional finite element
procedure. Through various numerical tests, the
accuracy and convergence characteristics of the
proposed element are studied.

2. Formulation Method

A continuum element and a beam element are
different in kind. Various transition elements that
connect these elements can be considered in ac­
cordance with the orders and kinds of finite
elements used in the analysis. In this paper, as
shown in Fig. 1, a solid-to-beam transition ele­
ment through which a low order continuum
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Fig. 1 Solid-to-beam transition elements
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Fig. 2 4-noded quadrilateral plane element

element and an Euler beam element can be
connected is considered. Figure 1(a) shows a 2-D
transition element that connects a 4-noded
quadrilateral plane element with a plane beam
element, and Fig. 1(b) shows a 3D transition
element that connects a 8-noded hexahedral solid
element with a general beam element.

In this work, the plane and solid elements are
referred to as continuum elements, and are both
formulated using the isoparametric method. The
mapped geometry of the 4-noded quadrilateral
plane element is depicted in Fig. 2, and its
mapping or shape functions are given as follows
(Bathe, 1982; Cook et al., 1989; Gupta, 1978;
Reddy, 1993).

1 1
Nl=4(l-~) (1-7]), N2=4(l+~) (1-7])
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(3)

(4)

On the other hand, the 8-noded hexahedral
solid element is isoparametrically mapped as
shown in Fig. 3, and its mapping or shape
functions are expressed in Eq. (2).

I 1
Nl=g(l-~) (1-7/) (l-s-L Nz=gO +~) (1-77) (1-S-)

I 1
M=gO +~) (1+7/) (l-S-), lV.=g(l-~) (l +7/) (l-S-)

1 I
N5=g(l-~) (1-7/) (I+S-), N6=g(lH) (1-7/) (IH)

N7=+(1 +~) (1+77) (I+t), N8=+(I-~) (1+77) (I tt) (2)

In Eqs. (1) and (2), $, 71 and 1: are natural
coordinates which are between - 1 and +L The
primary variables of these continuum elements,
having the CO-continuity, are the displacements in
the x, y and z directions. The Euler's beam
element, which is connected with them, however
has Cl-continuity, and thus the primary variables
must be taken as displacements and their Ist_

order derivatives. Figure 4 shows the nodal

Fig. 3 8-noded hexahedral solid element

x ..

Fig. 4 Nodal degreesof freedom of a 3D Euler beam
element

degrees of freedom of a 3D Euler beam element.
In the Euler beam theory, the displacements in

each direction, ux, uv, u», and the rotational
angle, Ox, Oy, Oz, hold the following relations
(Cook et al., 1989; Reddy, 1993).

ux=u+zOy-yOz
Uy=v-zOx
uz=w+yOx

In Eq. (3), u, V and ware the neutral axis
displacements in the x, y and z directions, re­
spectively ; and, Ox is the torsional angle and f)y,
Oz denote the deflection angles in the y and z
directions, respectively, and have the following
relations with the displacements.

f)y=-~

8 _dv
z- dx

Now, for the Euler beam element shown in Fig.
4, the displacement shape functions satisfying
Eqs. (3) and (4) are found in the following form.

{ U }= [N]{ d} (5)

In Eq. (5), {u} denotes the displacement
vector defined by { UY= [ux u; uz], and { d } is
the nodal displacement vector of an element
defined by { d [Ul VI WI OX! 8Y 1 OZI U2 V2 W2
Ox2 f)y2 OZ2]. On the other hand, the shape function
matrix [N] is expressed as

r
N, -.!~M-!iN; 0 liM _E.~Nf N, -.!~trrlt.'!; 0 liM -E.'NfI1 1 1 1 2 i 1 1"

lNJ1 0 No 0 -fiM 0 N, 0 lV, 0 -ft.'!; 0 N"

o 0 No t~NI -N, 0 0 N, t~No -No 0

where

Nl=l-$, N2=$
1\13= 1-3$2+2$3, N4=1$(1-$)2
Ns=3$2_2$3, N6=1( _$2+$3) (7)

In the equations above, the non-dimensional

coordinates are re-defined as $= ~, 71= 2: and

1:= 2; which are between -1 and +1 ; I is the

length; and, a and b represent the height and
width in the y and z directions, respectively, of the
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where { U }f= [u v w] and ( d }f= [UI VI WI U2

V2 W2 U3 V3 U4 V3 W4 Us Vs to« 8xs 8ys 8zs].

In Eq. (II), the shape function matrix [N]3 is

obtained as

2.2 Solid transition element

As shown in Fig. 6, another transition element

that connects a 3D solid element with a general

beam element is assumed to be a simple 5-noded

quadrangular pyramid.

In Fig. 6, nodes I, 2, 3 and 4 are the nodal

points connected with a hexahedral solid element,

and node 5 is the nodal point to which a general
Euler beam element having the C'-continuity is

linked. Therefore, the shape functions corre­

sponding to these nodes can be found from Eqs.

(l) and (6), and using these shape functions, the

displacement components of the transition ele­

ment are expressed as

beam element. And, N; denotes the 1st-order

derivative of N; with respect to X.

2.1 Plane transition element

Now, in order to find the shape functions of the

transition element that connects the continuum

element with the beam element, a 2D three-noded

transition element shown in Fig. 5 considered.

In Fig. 5, nodes I and 2 are the nodal points

being connected with a continuum element, and

node 3 is the nodal point to which an Euler beam

element having the Cl-continuity is linked.

Therefore, the shape functions corresponding to

these nodes can be obtained from Eqs. (I) and

(6), and using these shape functions, the dis­

placement components of the transition element

are expressed as

(8)

where

{ U h=[N]3{ d h (II)

{d }[= [u v] and { d }[= [UI VI U2 V2 U3 V3 8a]'

In Eq. (8), the shape function matrix [N]2 is

obtained as

where

I I
MS=T(I-~) (1-1]), NI=T(I-~) (1+1])

Nlb=~, Nl=3~2_2~, Nl=I(~2-~) (10)

[N]3= [N] s+[N] b (12)

iN1' 0 0 Nt 0 0 Nt 0 0 Nt 0 0]
[N]. 0 Nf 0 0 Nt 0 0 i« 0 0 Nt 0 (l3a)

o ON1'0 ONtO ONtO oNt

[N)·i
Nib 0 0 o !wl-.<"NI]2 2

0 Mb 0 -f'"W 0 -N3
b

(l3b)

0 0 N2
b a N,b Nb 027] 1 3
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Fig. 5 Two-dimensional transition element with
three nodes Fig. 6 Three-dimensional transition element with

five nodes
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Fig. 8 Cantilever with rectangular section subjected
to a tip load
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mathematically complex and so its integration can

be done in a closed form. The stiffness matrix

obtained by the closed form integration, however,

may be overestimated in certain cases (Cook et
al., 1989). In order to properly evaluate the

stiffness matrix, numerical integration IS

performed. Figure 7 shows the Gauss quadrature

scheme for the transition elements. In Fig. 7, x
denotes the Gauss integration points, and both

the plane and solid transition elements are

integrated by two point Gauss quadrature (Cook.

et al., 1989) but by one point near an apex.

3. Numerical Examples

Fig. 7 Gauss quadrature schemes for the transition
elements

2.3 Numerical integration

The stiffness matrix of the transition element

obtained from the equations above is not

And, the shape functions, Nib, NZ
b and N3

b, are
given by the expressions in Eq. (10). Now, using

the shape functions expressed in Eqs. (9) and

(12) , the matrix equations of the transition finite

elements are found through the same procedure as

in the conventional finite element method (Bathe,
1982; Cook et al., 1989; Reddy, 1993).

where

NIs=..L(I_~) (1-7]) (I-i;)
4

1
Nl=4(1-~) (1+7]) (I-i;)

N3
s = ~ (I -~) (I + 7]) (1+i;)

1
N:=4(1-~) (1-7]) (I + i;) ( 14)

In order to examine the accuracy and conver­

gence characteristics of the proposed transition
elements, numerical examples are analyzed using

several finite elements and the results are
compared with each other.

3.1 Cantilever

Firstly, as shown in Fig. 8, a cantilever with
rectangular section (a X b) subjected to a

concentrated end load P are analyzed using
several finite elements. Figure 9 shows several

finite element models of the cantilever: (a) a

model consisting of 10 plane elements only, (b) a
mixed model with a ransition element, and (c) a

model consisting of 10 beam elements only. The

mixed model is effective in that the number of

nodes is reduced by 22 % compared to the model
of plane elements only.

The variation of nodal displacements along the

beam length is compared in Fig. 10. It is shown

that the analysis result of the mixed model with a

transition element is closer to the presumed exact
solution, obtained using beam elements only, than
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(a) Plane element

(b) Transition element

• • • • • • • • • • •
(c) Beam element

Fig.!J Two-dimensional finite element models of
the cantilever

that of the model of plane elements only.

Figure II shows the finite element model for

three-dimensional analysis of the cantilever

shown in Fig. 8. Figure II (a) shows a model of

10 solid elements only, (b) a mixed model with a

transition element, and (c) a model of 10 beam

elements only.

The analysis results are similar to those shown

in Fig. 10, and the result of the mixed model with

a transition element is more accurate than that of

the model of solid elements only. Thus, we can

state that the use of a transition element increases

the solution accuracy and convergence, and

makes the finite element modeling be more con­

venient.

xii.

Fig. 10 Nodal displacement variation along the
beam length for various finite element
modeling methods

3.2 Connecting rod

A connecting rod is a typical structure for

which the plane transition elements can be useful

in finite element modeling. As shown in Fig. 12,

the parts of a connecting rod can be modeled

using plane elements or beam elements. Figure 12

(a) shows a model of plane elements only, and

(b) a mixed model with 4 plane transition

elements. The analysis results show the same

characteristics as those for the cantilever.

0.80.60.40.2o

(a) Solid element (a) Plane element

(b) Transition element

• • • • • • • • • • • (b) Transition element

(c) Beam element

Fig.l1 Three-dimensional finite element models of
the cantilever

Fig. 12 Two-dimensional finite element models of
connecting rod
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(a) Solid element

(b) Transition element

Fig. 13 Three-dimensional finite element models of
curved link

3.3 Curved link

A curved link can be regarded as a typical

structure for which the solid transition elements

may be useful in finite element modeling. As

shown in Fig. 13, the parts of a long link can be

modeled using solid elements or beam elements.

Figure 13(a) shows a model of solid elements

only, and Fig. 13(b) a mixed model with 4 solid

transition elements. The analysis results also

show the same characteristics as the previous

results.

Therefore, the use of the proposed transition

elements makes the finite element modeling of a

complex structure be relatively convenient, and

increases the solution accuracy and convergence

characteristics in virtue of the compatibility of the

primary variables.

4. Conclusion

In order to analyze effectively a complicated

mechanical structure by the finite element meth­

od, transition elements are formulated. A 3­

noded plane transition element and a 5-noded

solid transition element are newly proposed to

connect a continuum element and an Euler's

beam element. Through various numerical

examples, it is shown that these proposed transi­

tion elements enhance the efficiency of the finite

element analysis. As a result of this study, fol­

lowing conclusions are obtained.

(I) The proposed transition elements, which

meet the compatibility of the primary variables,

yield good accuracy.

(2) If these transition elements are used, the

number of nodes in a finite element model may be

considerably reduced, and the model construction

may become more convenient.

(3) The formulation rrlethod of these transition

elements can be applied for higher order elements.
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